Sunday, 7 January 2018

الانتقال من المتوسط - التنبؤ الخطأ


متحرك متوسط ​​التنبؤ التنبؤ. كما قد تخمن أننا نبحث في بعض من أكثر الأساليب بدائية للتنبؤ. ولكن نأمل أن تكون هذه مقدمة مفيدة على الأقل لبعض قضايا الحوسبة المتعلقة بتنفيذ التنبؤات في جداول البيانات. في هذا السياق سوف نستمر من خلال البدء في البداية والبدء في العمل مع توقعات المتوسط ​​المتحرك. نقل متوسط ​​التوقعات. الجميع على دراية بتحرك توقعات المتوسط ​​بغض النظر عما إذا كانوا يعتقدون أنهم. جميع طلاب الجامعات القيام بها في كل وقت. فكر في درجاتك االختبارية في الدورة التي ستحصل فيها على أربعة اختبارات خالل الفصل الدراسي. لنفترض أنك حصلت على 85 في الاختبار الأول. ما الذي يمكن أن تتنبأ به لنتيجة الاختبار الثانية ما رأيك بأن معلمك سوف يتنبأ بنتيجة الاختبار التالية ما رأيك في أن أصدقائك قد يتنبأون بنتيجة الاختبار التالية ما رأيك في توقع والديك لنتيجة الاختبار التالية بغض النظر عن كل بلابينغ كنت قد تفعل لأصدقائك وأولياء الأمور، هم ومعلمك من المرجح جدا أن نتوقع منك الحصول على شيء في مجال 85 كنت حصلت للتو. حسنا، الآن دعونا نفترض أنه على الرغم من الترويج الذاتي الخاص بك إلى أصدقائك، وكنت أكثر من تقدير نفسك والشكل يمكنك دراسة أقل للاختبار الثاني وحتى تحصل على 73. الآن ما هي جميع المعنيين وغير مدرك الذهاب إلى توقع أن تحصل على الاختبار الثالث هناك اثنين من المرجح جدا النهج بالنسبة لهم لوضع تقدير بغض النظر عما إذا كانوا سوف تقاسمها معك. قد يقولون لأنفسهم، هذا الرجل هو دائما تهب الدخان حول ذكائه. هيس الذهاب للحصول على آخر 73 إذا هيس محظوظا. ربما كان الوالدان يحاولان أن يكونا أكثر داعما ويقولان: كوتيل، حتى الآن حصلت على 85 و 73، لذلك ربما يجب أن تحصل على حوالي (85 73) 2 79. أنا لا أعرف، ربما لو كنت أقل من الحفلات و ويرنت يهتز في كل مكان في العالم، وإذا كنت بدأت تفعل الكثير من الدراسة يمكن أن تحصل على أعلى score. quot كل من هذه التقديرات تتحرك في الواقع متوسط ​​التوقعات. الأول يستخدم فقط أحدث درجاتك للتنبؤ بأدائك المستقبلي. وهذا ما يطلق عليه توقعات المتوسط ​​المتحرك باستخدام فترة واحدة من البيانات. والثاني هو أيضا متوسط ​​التوقعات المتحركة ولكن باستخدام فترتين من البيانات. دعونا نفترض أن كل هؤلاء الناس خرق على العقل العظيم لديك نوع من سكران قبالة لكم وتقرر أن تفعل بشكل جيد على الاختبار الثالث لأسباب خاصة بك ووضع درجة أعلى أمام كوتاليسكوت الخاص بك. كنت تأخذ الاختبار ودرجاتك هو في الواقع 89 الجميع، بما في ذلك نفسك، وأعجب. حتى الآن لديك الاختبار النهائي للفصل الدراسي القادمة وكالمعتاد كنت تشعر بالحاجة إلى غواد الجميع في جعل توقعاتهم حول كيف ستفعل على الاختبار الأخير. حسنا، نأمل أن ترى هذا النمط. الآن، ونأمل أن تتمكن من رؤية هذا النمط. ما الذي تعتقده هو صافرة الأكثر دقة بينما نعمل. الآن نعود إلى شركة التنظيف الجديدة التي بدأتها شقيقة نصف استدارة دعا صافرة بينما نعمل. لديك بعض بيانات المبيعات السابقة التي يمثلها القسم التالي من جدول بيانات. نعرض البيانات لأول مرة لتوقعات المتوسط ​​المتحرك لمدة ثلاث سنوات. يجب أن يكون إدخال الخلية C6 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C7 إلى C11. لاحظ كيف يتحرك المتوسط ​​على أحدث البيانات التاريخية ولكنه يستخدم بالضبط ثلاث فترات أحدث متاحة لكل تنبؤ. يجب أن تلاحظ أيضا أننا لسنا بحاجة حقا لجعل التنبؤات للفترات الماضية من أجل تطوير أحدث توقعاتنا. وهذا يختلف بالتأكيد عن نموذج التجانس الأسي. وشملت إيف التنبؤات كوتاباستكوت لأننا سوف استخدامها في صفحة الويب التالية لقياس صحة التنبؤ. الآن أريد أن أعرض النتائج المماثلة لمتوسطين توقعات المتوسط ​​المتحرك. يجب أن يكون إدخال الخلية C5 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C6 إلى C11. لاحظ كيف الآن فقط اثنين من أحدث القطع من البيانات التاريخية تستخدم لكل التنبؤ. مرة أخرى لقد قمت بتضمين التنبؤات اقتباسا لأغراض التوضيح واستخدامها لاحقا في التحقق من صحة التوقعات. بعض الأمور الأخرى التي من الأهمية أن تلاحظ. وبالنسبة للمتوسط ​​المتحرك للمتوسط ​​m، لا يتوقع إلا أن تستخدم معظم قيم البيانات الأخيرة في التنبؤ. لا شيء آخر ضروري. وبالنسبة للتنبؤ المتوسط ​​المتحرك للمتوسط ​​m، عند التنبؤ بالتنبؤات، لاحظ أن التنبؤ الأول يحدث في الفترة m 1. وستكون هاتان المسألتان مهمتين جدا عند تطوير الشفرة. تطوير المتوسط ​​المتحرك المتحرك. الآن نحن بحاجة إلى تطوير رمز لتوقعات المتوسط ​​المتحرك التي يمكن استخدامها أكثر مرونة. تتبع التعليمات البرمجية. لاحظ أن المدخلات هي لعدد الفترات التي تريد استخدامها في التوقعات ومصفوفة القيم التاريخية. يمكنك تخزينه في أي المصنف الذي تريده. وظيفة موفينغافيراج (تاريخي، نومبروفريودس) كما واحد إعلان وتهيئة المتغيرات ديم البند كما متغير عداد خافت كما عدد صحيح تراكم خافت كما أحادي ديم تاريخي الحجم كما عدد صحيح تهيئة المتغيرات عداد 1 تراكم 0 تحديد حجم الصفيف التاريخي تاريخ سيز التاريخية. الكونت كونتر 1 إلى نومبروفريودس تجميع العدد المناسب من أحدث القيم التي تمت ملاحظتها سابقا تراكم تراكم تاريخي (تاريخي - عدد نومبريوفريودس عداد) موفينغافيراج تراكوم نومبروفريودس سيتم شرح التعليمات البرمجية في الصف. تريد وضع الوظيفة على جدول البيانات بحيث تظهر نتيجة الحساب حيث ترغب في ما يلي. في الممارسة العملية المتوسط ​​المتحرك سيوفر تقدير جيد لمتوسط ​​التسلسل الزمني إذا كان المتوسط ​​ثابت أو ببطء في التغيير. وفي حالة المتوسط ​​الثابت، فإن أكبر قيمة m تعطي أفضل التقديرات للمتوسط ​​الأساسي. وستؤدي فترة المراقبة الأطول إلى الحد من آثار التباين. والغرض من توفير m أصغر هو السماح للتنبؤ بالاستجابة للتغيير في العملية الأساسية. ولتوضيح ذلك، نقترح مجموعة بيانات تتضمن التغييرات في الوسط الأساسي للمسلسلات الزمنية. ويبين الشكل السلاسل الزمنية المستخدمة للتوضيح مع متوسط ​​الطلب الذي نشأت منه السلسلة. يبدأ المتوسط ​​ك ثابت عند 10. يبدأ في الوقت 21، يزداد بوحدة واحدة في كل فترة حتى يصل إلى القيمة 20 في وقت 30. ثم يصبح ثابتة مرة أخرى. وتتم محاكاة البيانات بإضافة متوسط ​​الضوضاء العشوائية من التوزيع العادي مع متوسط ​​الصفر والانحراف المعياري 3. وتقريب نتائج المحاكاة إلى أقرب عدد صحيح. ويبين الجدول الملاحظات المحاكاة المستخدمة في المثال. عندما نستخدم الجدول، يجب أن نتذكر أنه في أي وقت من الأوقات، إلا أن البيانات السابقة معروفة. وتظهر تقديرات معلمة النموذج، بالنسبة إلى ثلاث قيم مختلفة من m، مع متوسط ​​السلاسل الزمنية في الشكل أدناه. ويبين الشكل متوسط ​​المتوسط ​​المتحرك للمتوسط ​​في كل مرة وليس التنبؤ. ومن شأن التنبؤات أن تحول منحنيات المتوسط ​​المتحرك إلى اليمين حسب الفترات. وهناك استنتاج واحد واضح على الفور من هذا الرقم. وبالنسبة للتقديرات الثلاثة جميعها، فإن المتوسط ​​المتحرك يتخلف عن الاتجاه الخطي، مع زيادة الفارق الزمني مع m. والفارق الزمني هو المسافة بين النموذج والتقدير في البعد الزمني. وبسبب الفارق الزمني، فإن المتوسط ​​المتحرك يقلل من الملاحظات نظرا لأن المتوسط ​​يتزايد. انحياز المقدر هو الفرق في وقت محدد في متوسط ​​قيمة النموذج والقيمة المتوسطة التي يتنبأ بها المتوسط ​​المتحرك. التحيز عندما يكون المتوسط ​​يزداد سلبيا. أما بالنسبة للمتوسط ​​المتناقص، فإن التحيز إيجابي. التأخر في الوقت والتحيز التي أدخلت في التقدير هي وظائف م. وكلما زادت قيمة m. وكلما كبر حجم التأخر والتحيز. لسلسلة متزايدة باستمرار مع الاتجاه أ. فإن قيم التأخر والتحيز لمقدر المتوسط ​​تعطى في المعادلات أدناه. لا تتطابق منحنيات المثال مع هذه المعادلات لأن نموذج المثال لا يزداد بشكل مستمر، بل يبدأ كتغيير ثابت للاتجاه ثم يصبح ثابتا مرة أخرى. كما تتأثر منحنيات المثال بالضوضاء. ويتمثل متوسط ​​المتوسط ​​المتحرك للتوقعات في المستقبل في تحويل المنحنيات إلى اليمين. ويزيد التأخر والتحيز تناسبيا. وتشير المعادلات أدناه إلى الفارق الزمني والتحيز لفترات التنبؤ في المستقبل عند مقارنتها بمعلمات النموذج. مرة أخرى، هذه الصيغ هي لسلسلة زمنية مع الاتجاه الخطي المستمر. ولا ينبغي لنا أن نفاجأ بهذه النتيجة. ويستند متوسط ​​التقدير المتحرك إلى افتراض متوسط ​​ثابت، والمثال له اتجاه خطي في المتوسط ​​خلال جزء من فترة الدراسة. وبما أن سلسلة الوقت الحقيقي نادرا ما تتوافق تماما مع افتراضات أي نموذج، يجب أن نكون مستعدين لمثل هذه النتائج. ويمكننا أيضا أن نخلص من الشكل إلى أن تباين الضوضاء له أكبر تأثير على m أصغر. ويكون التقدير أكثر تقلبا بكثير بالنسبة للمتوسط ​​المتحرك البالغ 5 من المتوسط ​​المتحرك البالغ 20. ولدينا رغبة متضاربة في زيادة m لتقليل تأثير التباين الناجم عن الضوضاء وتقليل m لجعل التنبؤ أكثر استجابة للتغيرات في الحقيقة. والخطأ هو الفرق بين البيانات الفعلية والقيمة المتوقعة. وإذا كانت السلسلة الزمنية حقا قيمة ثابتة، فإن القيمة المتوقعة للخطأ هي صفر، ويتألف تباين الخطأ من عبارة دالة وعبارة ثانية هي تباين الضوضاء. المصطلح الأول هو التباين في المتوسط ​​المقدر مع عينة من الملاحظات m، على افتراض أن البيانات تأتي من مجتمع ذو متوسط ​​ثابت. يتم تقليل هذا المصطلح من خلال جعل m كبيرة قدر الإمكان. A م كبير يجعل التوقعات لا تستجيب لتغيير في السلسلة الزمنية الأساسية. لجعل التنبؤات تستجيب للتغييرات، نريد m صغيرة قدر الإمكان (1)، ولكن هذا يزيد من التباين الخطأ. ويتطلب التنبؤ العملي قيمة وسيطة. التنبؤ مع إكسيل تقوم الوظيفة الإضافية للتنبؤ بتطبيق صيغ المتوسط ​​المتحرك. ويبين المثال الوارد أدناه التحليل الذي توفره الوظيفة الإضافية لعينة البيانات في العمود باء. ويتم فهرسة الملاحظات العشرة الأولى من 9 إلى 0. وبالمقارنة بالجدول أعلاه، يتم تغيير مؤشرات الفترة بمقدار -10. وتوفر الملاحظات العشرة الأولى قيم بدء التشغيل للتقدير وتستخدم لحساب المتوسط ​​المتحرك للفترة 0. ويبين العمود (10) (C) المتوسطات المتحركة المحسوبة. وتكون معلمة المتوسط ​​المتحرك m في الخلية C3. ويبين العمود (1) (D) توقعات لفترة واحدة في المستقبل. الفترة الزمنية المتوقعة في الخلية D3. عندما يتم تغيير الفاصل الزمني المتوقع إلى عدد أكبر يتم تحويل الأرقام في العمود فور إلى أسفل. ويبين العمود إر (1) (E) الفرق بين الملاحظة والتنبؤ. على سبيل المثال، الملاحظة في الوقت 1 هي 6. القيمة المتوقعة من المتوسط ​​المتحرك في الوقت 0 هي 11.1. الخطأ ثم -5.1. ويحسب الانحراف المعياري ومتوسط ​​الانحراف المتوسط ​​في الخلايين E6 و E7 على التوالي. متوسطات التحريك المتوسطات المتحركة مع مجموعات البيانات التقليدية تكون القيمة المتوسطة هي في الغالب الأولى، وإحدى الإحصاءات الموجزة الأكثر فائدة لحسابها. وعندما تكون البيانات في شكل سلسلة زمنية، فإن متوسط ​​السلسلة مقياس مفيد، ولكنه لا يعكس الطبيعة الدينامية للبيانات. وغالبا ما تكون القيم المتوسطة المحسوبة على فترات قصيرة، إما قبل الفترة الحالية أو تركزت على الفترة الحالية، أكثر فائدة. لأن هذه القيم المتوسطة سوف تختلف، أو تتحرك، كما تتحرك الفترة الحالية من الوقت ر 2، ر 3. الخ أنها تعرف باسم المتوسطات المتحركة (ماس). المتوسط ​​المتحرك البسيط هو (عادة) المتوسط ​​غير المرجح للقيم السابقة k. المتوسط ​​المتحرك المرجح ألساسا هو نفس المتوسط ​​المتحرك البسيط، ولكن مع المساهمات في المتوسط ​​المرجح بقربها من الوقت الحالي. لأنه ليس هناك واحد، ولكن سلسلة كاملة من المتوسطات المتحركة لأي سلسلة معينة، ومجموعة من ماس يمكن أن تكون نفسها رسمت على الرسوم البيانية، وتحليلها على شكل سلسلة، وتستخدم في النمذجة والتنبؤ. ويمكن بناء مجموعة من النماذج باستخدام المتوسطات المتحركة، وتعرف هذه النماذج بنماذج ما. إذا تم الجمع بين هذه النماذج ونماذج الانحدار الذاتي (أر)، فإن النماذج المركبة الناتجة تعرف بنماذج أرما أو أريما (I هي متكاملة). المتوسطات المتحركة البسيطة منذ يمكن اعتبار سلسلة زمنية كمجموعة من القيم، t 1،2،3،4، n يمكن حساب متوسط ​​هذه القيم. إذا افترضنا أن n كبير جدا، ونحن نختار عدد صحيح k الذي هو أصغر بكثير من n. يمكننا حساب مجموعة من متوسطات الفدرات أو متوسطات متحركة بسيطة (من الترتيب k): يمثل كل قياس متوسط ​​قيم البيانات على مدى فاصل من ملاحظات k. لاحظ أن أول ما ممكن من النظام gt0 k هو أن ل t ك. وبوجه أعم يمكننا إسقاط الجزء الإضافي الإضافي في التعبيرات أعلاه والكتابة: وهذا يشير إلى أن المتوسط ​​المقدر في الوقت t هو المتوسط ​​البسيط للقيمة الملحوظة في الوقت t والخطوات السابقة k -1 الزمنية. إذا تم تطبيق الأوزان التي تقلل من مساهمة الملاحظات التي هي أبعد من ذلك في الوقت المناسب، ويقال أن المتوسط ​​المتحرك تمهيد أضعافا مضاعفة. وغالبا ما تستخدم المتوسطات المتحركة كشكل من أشكال التنبؤ، حيث القيمة المقدرة لسلسلة في الوقت t 1، S t1. يؤخذ على أنه ما للفترة حتى تصل إلى الوقت t. مثلا يستند تقدير اليوم إلى متوسط ​​القيم المسجلة سابقا حتى يوم الأمس (بالنسبة للبيانات اليومية). ويمكن اعتبار المتوسطات المتحركة البسيطة شكلا من أشكال التمهيد. في المثال الموضح أدناه، تم تعزيز مجموعة بيانات تلوث الهواء المبينة في مقدمة هذا الموضوع بمتوسط ​​متحرك لمدة 7 أيام (ما)، موضح هنا باللون الأحمر. كما يمكن أن يرى، خط ما ينعم القمم وأحواض في البيانات ويمكن أن تكون مفيدة جدا في تحديد الاتجاهات. وتعني الصيغة القياسية للحساب الآجل أن نقاط البيانات K -1 الأولى ليس لها قيمة ما، ولكن بعد ذلك تمتد الحسابات إلى نقطة البيانات النهائية في السلسلة. PM10 القيم المتوسطة اليومية، غرينتش المصدر: شبكة لندن لجودة الهواء، londonair. org. uk سبب واحد لحساب المتوسطات المتحركة البسيطة بالطريقة الموصوفة هو أنه يمكن القيم التي سيتم حسابها لجميع الفواصل الزمنية من الزمن تك حتى الوقت الحاضر، و كما يتم الحصول على قياس جديد للوقت ر 1، و ما للوقت ر 1 يمكن أن تضاف إلى مجموعة تحسب بالفعل. وهذا يوفر إجراء بسيطا لمجموعات البيانات الديناميكية. ومع ذلك، هناك بعض القضايا مع هذا النهج. ومن المعقول القول بأن القيمة المتوسطة خلال الفترات الثلاث الأخيرة، على سبيل المثال، ينبغي أن تكون موجودا في الوقت t -1، وليس الوقت t. وبالنسبة إلى درجة الماجستير على مدى عدد من الفترات ربما ربما ينبغي أن يكون موجودا في منتصف النقطة بين فترتين زمنيتين. حل لهذه المسألة هو استخدام الحسابات ما محورها، حيث ما في الوقت t هو متوسط ​​مجموعة متماثلة من القيم حول ر. وعلى الرغم من مزاياه الواضحة، فإن هذا النهج لا يستخدم عموما لأنه يتطلب توافر البيانات للأحداث المقبلة، وهو ما قد لا يكون كذلك. في الحالات التي يكون فيها التحليل بالكامل لسلسلة حالية، قد يكون استخدام ماس المركزة أفضل. ويمكن اعتبار المتوسطات المتحركة البسيطة شكلا من أشكال التمهيد، وإزالة بعض المكونات عالية التردد من سلسلة زمنية وتسليط الضوء على الاتجاهات (ولكن ليس إزالتها) بطريقة مماثلة للمفهوم العام للتصفية الرقمية. في الواقع، المتوسطات المتحركة هي شكل من أشكال المرشحات الخطية. فمن الممكن تطبيق حساب متوسط ​​متحرك لسلسلة تم تمهيدها بالفعل، أي تمهيد أو تصفية سلسلة سلسة بالفعل. على سبيل المثال، مع متوسط ​​متحرك من النظام 2، يمكننا أن نعتبر أنه يحسب باستخدام الأوزان، وبالتالي فإن ما في x 2 0.5 × 1 0.5 × 2. وبالمثل، فإن ما في x 3 0.5 × 2 0.5 × 3. إذا نحن (0.5 × 0.5 0.5 × 0.5) 0.5 (0.5 × 2 0.5 × 3) 0.25 × 1 0.5 × 2 0.25 × 3 أي الترشيح ذي المرحلتين (أو التفاف) قد أنتج متوسط ​​متحرك متماثل مرجح، مع أوزان. يمكن أن تنتج العديد من المحولات التحويلية متوسطات متحركه معززة جدا، وبعضها تم العثور على استخدام معين في المجالات المتخصصة، كما هو الحال في حسابات التأمين على الحياة. يمكن استخدام المتوسطات المتحركة لإزالة التأثيرات الدورية إذا تم حسابها مع طول التواتر كما هو معروف. على سبيل المثال، مع التغيرات الشهرية في البيانات الموسمية يمكن في كثير من الأحيان إزالتها (إذا كان هذا هو الهدف) من خلال تطبيق متماثل المتوسط ​​المتحرك لمدة 12 شهرا مع جميع الشهور المرجحة بالتساوي، باستثناء الأولى والأخيرة التي يتم وزنها بنسبة 12. هذا لأن هناك سوف يكون 13 شهرا في النموذج المتماثل (الوقت الحالي، ر - 6 أشهر). وينقسم المجموع إلى 12. ويمكن اعتماد إجراءات مماثلة لأي دورية محددة جيدا. المتوسطات المتحركة المرجح أضعافا مضاعفة (إوما) مع صيغة المتوسط ​​المتحرك البسيط: جميع المشاهدات متساوية بالتساوي. إذا اتصلنا هذه الأوزان متساوية، ألفا ر. فإن كل وزن من الأوزان k يساوي 1 ك. وبالتالي فإن مجموع الأوزان سيكون 1، والصيغة ستكون: لقد رأينا بالفعل أن تطبيقات متعددة من هذه العملية يؤدي إلى الأوزان متباينة. مع المتوسطات المتحركة المرجح أضعافا مضاعفة الإسهام في القيمة المتوسطة من الملاحظات التي هي أكثر إزالتها في الوقت يتم تخفيض مداولات، مما يؤكد على الأحداث الأخيرة (المحلية). في الأساس يتم عرض معلمة التمهيد 0 ألف طن lt1، وتنقح الصيغة إلى: تكون الصيغة المتماثلة لهذه الصيغة بالشكل التالي: إذا تم اختيار الأوزان في النموذج المتماثل كعبارات لشروط التوسع ذي الحدين، (1212) 2q. فإنها سوف تلخص 1، وكما ف يصبح كبيرا، وتقريب توزيع عادي. هذا هو شكل من أشكال الترجيح النواة، مع الحدين تعمل بوصفها وظيفة النواة. التلازم المرحلة الثانية وصفها في القسم الفرعي السابق هو على وجه التحديد هذا الترتيب، مع س 1، مما أسفر عن الأوزان. في التمهيد الأسي فمن الضروري استخدام مجموعة من الأوزان التي مجموع إلى 1 والتي تقلل في حجم هندسيا. وعادة ما تكون الأوزان المستخدمة من النموذج: لإظهار أن هذه الأوزان توازي 1، فكر في توسيع 1 كمجموعة. يمكننا كتابة وتوسيع التعبير بين قوسين باستخدام الصيغة ذات الحدين (1- x) ص. حيث x (1) و p -1، مما يعطي: ثم يوفر نموذجا من المتوسط ​​المتحرك المرجح للنموذج: يمكن كتابة هذا الملخص كعلاقة تكرار: مما يبسط الحساب بشكل كبير، ويتجنب مشكلة أن نظام الترجيح يجب أن يكون بدقة لانهائية للأوزان لتلخص 1 (لقيم صغيرة من ألفا، وهذا هو عادة ليست هي القضية). تختلف الرموز المستخدمة من قبل مؤلفين مختلفين. يستخدم البعض الحرف S للإشارة إلى أن الصيغة هي في الأساس متغير أملس، وكتب: في حين أن أدبيات نظرية التحكم غالبا ما تستخدم Z بدلا من S للقيم المرجحة أو الممهدة أضعافا مضاعفة (انظر، على سبيل المثال، لوكاس و ساكوتشي، 1990، LUC1 ، وموقع نيست لمزيد من التفاصيل وأمثلة العمل). الصيغ المذكورة أعلاه مستمدة من عمل روبرتس (1959، ROB1)، ولكن هنتر (1986، HUN1) يستخدم تعبيرا عن النموذج: الذي قد يكون أكثر ملاءمة للاستخدام في بعض إجراءات التحكم. مع ألفا 1 متوسط ​​التقدير هو ببساطة قيمته المقاسة (أو قيمة عنصر البيانات السابق). مع 0.5 التقدير هو المتوسط ​​المتحرك البسيط للقياسات الحالية والسابقة. في نماذج التنبؤ القيمة، S t. وكثيرا ما يستخدم كقيمة تقديرية أو توقعية للفترة الزمنية القادمة، أي كالتقدير ل x في الوقت t 1. وهكذا لدينا: وهذا يدل على أن القيمة المتوقعة في الوقت t 1 هي مزيج من المتوسط ​​المتحرك المرجح أضعافا سابقا بالإضافة إلى مكون يمثل خطأ التنبؤ المرجح، إبسيلون. في الوقت t. وبافتراض وجود سلسلة زمنية والتنبؤ مطلوب، يلزم وجود قيمة ألفا. ويمكن تقدير ذلك من البيانات الموجودة عن طريق تقييم مجموع أخطاء التنبؤ التربيعية التي يتم الحصول عليها مع قيم متفاوتة ألفا لكل t 2،3. (1) في تطبيقات التحكم، تكون قيمة ألفا مهمة في ذلك يستخدم في تحديد حدود التحكم العليا والسفلى، ويؤثر على متوسط ​​طول التشغيل (أرل) المتوقع قبل أن يتم كسر حدود السيطرة هذه (على افتراض أن السلاسل الزمنية تمثل مجموعة من المتغيرات المستقلة العشوائية الموزعة بشكل مماثل مع التباين المشترك). وفي ظل هذه الظروف يكون التباين في إحصائية التحكم: (لوكاس و ساكوتشي، 1990): وعادة ما تحدد حدود المراقبة كمضاعفات ثابتة لهذا التباين المتناظر، على سبيل المثال. - 3 مرات الانحراف المعياري. إذا افترض 0.25، على سبيل المثال، ويفترض أن البيانات التي يجري رصدها يكون توزيع عادي، N (0،1)، عندما تكون في السيطرة، ستكون حدود السيطرة - 1.134 وسوف تصل العملية إلى حد واحد أو حد آخر في 500 خطوة في المتوسط. لوكاس و ساكوتشي (1990 LUC1) تستمد أرلز لمجموعة واسعة من قيم ألفا وتحت مختلف الافتراضات باستخدام إجراءات ماركوف شين. وهي تقوم بتبويب النتائج، بما في ذلك توفير أرلس عندما يكون متوسط ​​عملية التحكم قد تم نقله من قبل بعض مضاعفات الانحراف المعياري. على سبيل المثال، مع التحول 0.5 مع ألفا 0.25 و أرل أقل من 50 خطوة الوقت. ومن المعروف أن النهج المذكورة أعلاه تمهيد الأسي واحد. حيث يتم تطبيق الإجراءات مرة واحدة على السلاسل الزمنية ومن ثم يتم إجراء عمليات التحليل أو التحكم على مجموعة البيانات التي تم تمريرها. إذا كانت مجموعة البيانات تشتمل على مكونات موسمية ومؤثرة، يمكن تطبيق التمهيد الأسي على مرحلتين أو ثلاث مراحل كوسيلة لإزالة (هذه النماذج بشكل صريح) (انظر كذلك القسم الخاص بالتنبؤ أدناه، ومثال نيست العامل). CHA1 شاتفيلد C (1975) تحليل سلسلة تايمز: النظرية والتطبيق. تشابمان أند هول، لندن HUN1 هنتر J S (1986) المتوسط ​​المتحرك المرجح أضعافا مضاعفة. J من كواليتي تيشنولوغي، 18، 203-210 LUC1 لوكاس J M، ساكوتشي M S (1990) المتوسط ​​المتحرك لأسفل متحكم في مخططات التحكم: الخصائص والتحسينات. تيشنوميتريكس، 32 (1)، 1-12 ROB1 روبرتس S W (1959) اختبارات التحكم في الرسم البياني استنادا إلى المتوسطات المتحركة الهندسية. تيشنوميتريكس، 1، 239-250

No comments:

Post a Comment