net. sourceforge. openforecast. models الدرجة موفينغافيراجوديل يعتمد نموذج التنبؤ المتوسط المتحرك على سلسلة زمنية تم إنشاؤها بشكل اصطناعي يتم فيها استبدال القيمة لفترة زمنية معينة بمتوسط تلك القيمة والقيم لبعض الوقت السابق والوقت الذي يليه الفترات. كما كنت قد خمنت من الوصف، وهذا النموذج هو الأنسب لبيانات سلسلة زمنية أي البيانات التي تتغير مع مرور الوقت. على سبيل المثال، العديد من المخططات من الأسهم الفردية في سوق الأسهم تظهر 20، 50، 100 أو 200 يوم المتوسطات المتحركة كوسيلة لإظهار الاتجاهات. وبما أن قيمة التوقعات لأي فترة معينة هي متوسط الفترات السابقة، فإن التنبؤ سيبدو دائما متخلفا عن الزيادة أو النقصان في القيم الملاحظة (المعتمدة). على سبيل المثال، إذا كان لسلسلة البيانات اتجاها تصاعديا ملحوظا، فإن توقعات المتوسط المتحرك سوف توفر عموما قيمة ناقصة لقيم المتغير التابع. وتتميز طريقة المتوسط المتحرك بميزة على نماذج التنبؤ الأخرى حيث أنها تعمل على إزالة القمم والأحواض (أو الوديان) في مجموعة من الملاحظات. ومع ذلك، كما أن لديها العديد من العيوب. على وجه الخصوص هذا النموذج لا ينتج معادلة فعلية. ولذلك، فإنه ليس كل ذلك مفيد كأداة متوسطة المدى التنبؤ المدى. ويمكن استخدامه بشكل موثوق للتنبؤ بفترة أو فترتين في المستقبل. ويمثل نموذج المتوسط المتحرك حالة خاصة للمتوسط المتحرك الأعم المرجح. في المتوسط المتحرك البسيط، تكون جميع الأوزان متساوية. منذ: 0.3 المؤلف: ستيفن R. جولد الحقول الموروثة من الطبقة net. sourceforge. openforecast. models. AbstractForecastingModel موفينغافيريفيوديل () بناء نموذج جديد للتنبؤ المتوسط المتحرك. موفينغايفيراجوديل (إنت إنتري) يبني نموذج جديد للتنبؤ المتوسط المتحرك، وذلك باستخدام الفترة المحددة. جيتفوريكاستيب () إرجاع اسم واحد أو اثنين من اسم هذا النوع من نموذج التنبؤ. إينيت (داتاسيت داتاسيت) يستخدم لتهيئة نموذج المتوسط المتحرك. توسترينغ () ينبغي تجاوز ذلك لتوفير وصف نصي لنموذج التنبؤ الحالي بما في ذلك، حيثما أمكن، أي معلمات مشتقة مستخدمة. الطرق الموروثة من الطبقة net. sourceforge. openforecast. models. WeightedMovingAverageModel موفينغ متوسطي معدل بناء نموذج جديد للتنبؤ المتوسط المتحرك. ولكي يتم إنشاء نموذج صالح، يجب استدعاء إينيت وتمرير مجموعة بيانات تحتوي على سلسلة من نقاط البيانات مع تهيئة متغير الوقت لتحديد المتغير المستقل. موفينغافيراجيموديل يبني نموذج جديد للتنبؤ بالمتوسط المتحرك، باستخدام الاسم المعطى كمتغير مستقل. المعلمات: إنديبندنتفاريابل - اسم المتغير المستقل لاستخدامه في هذا النموذج. موفينغافيراجيموديل يبني نموذج جديد للتنبؤ بالمتوسط المتحرك، باستخدام الفترة المحددة. ولكي يتم إنشاء نموذج صالح، يجب استدعاء إينيت وتمرير مجموعة بيانات تحتوي على سلسلة من نقاط البيانات مع تهيئة متغير الوقت لتحديد المتغير المستقل. وتستعمل قيمة الفترة لتحديد عدد الملاحظات الواجب استعمالها لحساب المتوسط المتحرك. على سبيل المثال، بالنسبة للمتوسط المتحرك لمدة 50 يوما حيث تكون نقاط البيانات هي ملاحظات يومية، يجب تعيين الفترة إلى 50. كما تستخدم الفترة لتحديد مقدار الفترات المستقبلية التي يمكن التنبؤ بها بشكل فعال. مع المتوسط المتحرك لمدة 50 يوما، فإننا لا يمكننا بشكل معقول - مع أي درجة من الدقة - توقعات أكثر من 50 يوما بعد الفترة الأخيرة التي تتوفر البيانات. قد يكون هذا أكثر فائدة من، على سبيل المثال فترة 10 يوما، حيث يمكننا فقط توقع معقول 10 يوما بعد الفترة الماضية. المعلمات: الفترة - عدد الرصدات الواجب استعمالها لحساب المتوسط المتحرك. موفينغافيراجيموديل إنشاء نموذج جديد للتنبؤ بالمتوسط المتحرك، باستخدام الاسم المعطى كمتغير مستقل والفترة المحددة. المعلمات: إنديبندنتفاريابل - اسم المتغير المستقل لاستخدامه في هذا النموذج. الفترة - عدد الملاحظات التي ستستخدم لحساب المتوسط المتحرك. تستخدم لتهيئة نموذج المتوسط المتحرك. يجب استدعاء هذه الطريقة قبل أي طريقة أخرى في الصف. وبما أن نموذج المتوسط المتحرك لا يستمد أي معادلة للتنبؤ، فإن هذه الطريقة تستخدم داتاسيت المدخلات لحساب قيم التنبؤات لجميع القيم الصحيحة للمتغير الزمني المستقل. تحديد بواسطة: إينيت في الواجهة التنبؤات تجاوزات: إينيت في الصف أبستراكتيمباسيدموديل معلمات: داتاسيت - مجموعة بيانات من الملاحظات التي يمكن استخدامها لتهيئة المعلمات التنبؤ نموذج التنبؤ. جيتفوريكاستيب إرجاع اسم واحد أو اثنين من اسم هذا النوع من نموذج التنبؤ. حافظ على هذا قصير. يجب تنفيذ وصف أطول في أسلوب توسترينغ. وينبغي تجاوز ذلك لتوفير وصف نصي لنموذج التنبؤ الحالي بما في ذلك، حيثما أمكن، أي معلمات مشتقة مستخدمة. تحديد بواسطة: توسترينغ في واجهة التنبؤات تجاوز أوفيرديز: توسترينغ في فئة ويتدوفينغ أفيراجوديل عوائد: تمثيل سلسلة من نموذج التنبؤ الحالي، ومعلماته. متوسط متوسط التنبؤ التنبؤ. كما قد تخمن أننا نبحث في بعض من أكثر الأساليب بدائية للتنبؤ. ولكن نأمل أن تكون هذه مقدمة مفيدة على الأقل لبعض قضايا الحوسبة المتعلقة بتنفيذ التنبؤات في جداول البيانات. في هذا السياق سوف نستمر من خلال البدء في البداية والبدء في العمل مع توقعات المتوسط المتحرك. نقل متوسط التوقعات. الجميع على دراية بتحرك توقعات المتوسط بغض النظر عما إذا كانوا يعتقدون أنهم. جميع طلاب الجامعات القيام بها في كل وقت. فكر في درجاتك االختبارية في الدورة التي ستحصل فيها على أربعة اختبارات خالل الفصل الدراسي. لنفترض أنك حصلت على 85 في الاختبار الأول. ما الذي يمكن أن تتنبأ به لنتيجة الاختبار الثانية ما رأيك بأن معلمك سوف يتنبأ بنتيجة الاختبار التالية ما رأيك في أن أصدقائك قد يتنبأون بنتيجة الاختبار التالية ما رأيك في توقع والديك لنتيجة الاختبار التالية بغض النظر عن كل بلابينغ كنت قد تفعل لأصدقائك وأولياء الأمور، هم ومعلمك من المرجح جدا أن نتوقع منك الحصول على شيء في مجال 85 كنت حصلت للتو. حسنا، الآن دعونا نفترض أنه على الرغم من الترويج الذاتي الخاص بك إلى أصدقائك، وكنت أكثر من تقدير نفسك والشكل يمكنك دراسة أقل للاختبار الثاني وحتى تحصل على 73. الآن ما هي جميع المعنيين وغير مدرك الذهاب إلى توقع أن تحصل على الاختبار الثالث هناك اثنين من المرجح جدا النهج بالنسبة لهم لوضع تقدير بغض النظر عما إذا كانوا سوف تقاسمها معك. قد يقولون لأنفسهم، هذا الرجل هو دائما تهب الدخان حول ذكائه. هيس الذهاب للحصول على آخر 73 إذا هيس محظوظا. ربما كان الوالدان يحاولان أن يكونا أكثر داعما ويقولان: كوتيل، حتى الآن حصلت على 85 و 73، لذلك ربما يجب أن تحصل على حوالي (85 73) 2 79. أنا لا أعرف، ربما لو كنت أقل من الحفلات و ويرنت يهتز في كل مكان في العالم، وإذا كنت بدأت تفعل الكثير من الدراسة يمكن أن تحصل على أعلى score. quot كل من هذه التقديرات تتحرك في الواقع متوسط التوقعات. الأول يستخدم فقط أحدث درجاتك للتنبؤ بأدائك المستقبلي. وهذا ما يطلق عليه توقعات المتوسط المتحرك باستخدام فترة واحدة من البيانات. والثاني هو أيضا متوسط التوقعات المتحركة ولكن باستخدام فترتين من البيانات. دعونا نفترض أن كل هؤلاء الناس خرق على العقل العظيم لديك نوع من سكران قبالة لكم وتقرر أن تفعل بشكل جيد على الاختبار الثالث لأسباب خاصة بك ووضع درجة أعلى أمام كوتاليسكوت الخاص بك. كنت تأخذ الاختبار ودرجاتك هو في الواقع 89 الجميع، بما في ذلك نفسك، وأعجب. حتى الآن لديك الاختبار النهائي للفصل الدراسي القادمة وكالمعتاد كنت تشعر بالحاجة إلى غواد الجميع في جعل توقعاتهم حول كيف ستفعل على الاختبار الأخير. حسنا، نأمل أن ترى هذا النمط. الآن، ونأمل أن تتمكن من رؤية هذا النمط. ما الذي تعتقده هو صافرة الأكثر دقة بينما نعمل. الآن نعود إلى شركة التنظيف الجديدة التي بدأتها شقيقة نصف استدارة دعا صافرة بينما نعمل. لديك بعض بيانات المبيعات السابقة التي يمثلها القسم التالي من جدول بيانات. نعرض البيانات لأول مرة لتوقعات المتوسط المتحرك لمدة ثلاث سنوات. يجب أن يكون إدخال الخلية C6 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C7 إلى C11. لاحظ كيف يتحرك المتوسط على أحدث البيانات التاريخية ولكنه يستخدم بالضبط ثلاث فترات أحدث متاحة لكل تنبؤ. يجب أن تلاحظ أيضا أننا لسنا بحاجة حقا لجعل التنبؤات للفترات الماضية من أجل تطوير أحدث توقعاتنا. وهذا يختلف بالتأكيد عن نموذج التجانس الأسي. وشملت إيف التنبؤات كوتاباستكوت لأننا سوف استخدامها في صفحة الويب التالية لقياس صحة التنبؤ. الآن أريد أن أعرض النتائج المماثلة لمتوسطين توقعات المتوسط المتحرك. يجب أن يكون إدخال الخلية C5 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C6 إلى C11. لاحظ كيف الآن فقط اثنين من أحدث القطع من البيانات التاريخية تستخدم لكل التنبؤ. مرة أخرى لقد قمت بتضمين التنبؤات اقتباسا لأغراض التوضيح واستخدامها لاحقا في التحقق من صحة التوقعات. بعض الأمور الأخرى التي من الأهمية أن تلاحظ. وبالنسبة للمتوسط المتحرك للمتوسط m، لا يتوقع إلا أن تستخدم معظم قيم البيانات الأخيرة في التنبؤ. لا شيء آخر ضروري. وبالنسبة للتنبؤ المتوسط المتحرك للمتوسط m، عند التنبؤ بالتنبؤات، لاحظ أن التنبؤ الأول يحدث في الفترة m 1. وستكون هاتان المسألتان مهمتين جدا عند تطوير الشفرة. تطوير المتوسط المتحرك المتحرك. الآن نحن بحاجة إلى تطوير رمز لتوقعات المتوسط المتحرك التي يمكن استخدامها أكثر مرونة. تتبع التعليمات البرمجية. لاحظ أن المدخلات هي لعدد الفترات التي تريد استخدامها في التوقعات ومصفوفة القيم التاريخية. يمكنك تخزينه في أي المصنف الذي تريده. وظيفة موفينغافيراج (تاريخي، نومبروفريودس) كما واحد إعلان وتهيئة المتغيرات ديم البند كما متغير عداد خافت كما عدد صحيح تراكم خافت كما أحادي ديم تاريخي الحجم كما عدد صحيح تهيئة المتغيرات عداد 1 تراكم 0 تحديد حجم الصفيف التاريخي تاريخ سيز التاريخية. الكونت كونتر 1 إلى نومبروفريودس تجميع العدد المناسب من أحدث القيم التي تمت ملاحظتها سابقا تراكم تراكم تاريخي (تاريخي - عدد نومبريوفريودس عداد) موفينغافيراج تراكوم نومبروفريودس سيتم شرح التعليمات البرمجية في الصف. تريد وضع الدالة على جدول البيانات بحيث تظهر نتيجة الحساب حيث تريد أن يكون. SIMPLE أفيراج أفيراج مشاكل في استخدام المتوسط المتحرك البسيط كأداة للتنبؤ: المتوسط المتحرك يتتبع البيانات الفعلية، ولكنه دائما متخلفة وراء ذلك. المتوسط المتحرك لن يصل أبدا إلى قمم أو وديان من البيانات الفعلية 1515 ينعم البيانات لا أقول لك كثيرا عن المستقبل ومع ذلك، هذا لا يجعل المتوسط المتحرك عديمة الفائدة 151 تحتاج فقط أن تكون على بينة من مشاكلها. سليد دسكريبتيون أوديو ترانسكريبتيون لتلخيص، لمتوسط متحرك بسيط أو متوسط متحرك واحد، شهدنا بعض المشاكل مع استخدام المتوسط المتحرك البسيط كأداة للتنبؤ. المتوسط المتحرك هو تتبع البيانات الفعلية، ولكن متخلفة دائما وراء ذلك. المتوسط المتحرك لن يصل أبدا إلى قمم أو وديان البيانات الفعلية 1515 ينعم البيانات، وأنه حقا لا أقول لك الكثير عن المستقبل، لأنه هو ببساطة التنبؤ فترة واحدة مقدما، ومن المتوقع أن تمثل أفضل قيمة للفترة المقبلة، فترة واحدة مقدما، لكنه لا اقول لكم أبعد من ذلك بكثير. وهذا لا يجعل المتوسط المتحرك البسيط غير مجدية 151 في الحقيقة ترى المتوسطات المتحركة البسيطة
No comments:
Post a Comment